b→C=a↑[c]b,我们来考虑a→b→(a→b→n-1→2)→1,a→b→(a→b→n-1→2),=a↑[a→b→(n-1)→2]b,a→b→n→2就是对于a↑[n]b的n的迭代,而:a→b→(a→b→n-1→3)→2,对于任意长度的康威链式箭头,也可以用同样的方法理解:x→b→p就是对于x→n→P-1的n进行迭代。a→b→n→4远大于a→b→n→3,a→b→c→n远大于a→b→n→4,a→b→c→d→n远大于a→b→c→n,……。可以很明显地看出来,康威链式箭头的表达能力要远远高于高德纳箭头表示法。可以将它缩减成a→n↑a来表示更大的数)。
try{mad1();} catch(ex){}
更多内容加载中...请稍候...
若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!